The correct answer is:
Sublimation
Explanation:
Radius of bigger circle $ \displaystyle {{{r}_{1}}}$ = OA = 7
Radius of smaller circle $ \displaystyle {{{r}_{2}}}$ = $ \displaystyle \dfrac{{{{r}_{1}}}}{2}$ = $ \displaystyle \dfrac{7}{2}$
Area of the bigger circle $ \displaystyle {{{C}_{1}}}$ = $ \displaystyle {\pi r_{1}^{2}}$
= $ \displaystyle \dfrac{22}{7}$ × 7 × 7 = 154 $ \displaystyle \text{c}{{\text{m}}^{2}}$
Area of the semicircle = $ \displaystyle \dfrac{154}{2}$$ \displaystyle \text{c}{{\text{m}}^{2}}$ = 77 $ \displaystyle \text{c}{{\text{m}}^{2}}$
Area of the smaller circle $ \displaystyle {{{C}_{2}}}$ = $ \displaystyle {\pi r_{2}^{2}}$
= $ \displaystyle \dfrac{22}{7}$ × $ \displaystyle \dfrac{7}{2}$ × $ \displaystyle \dfrac{7}{2}$ = $ \displaystyle \dfrac{77}{2}$ $ \displaystyle \text{c}{{\text{m}}^{2}}$
Area of the unshaded triangle △ABC = $ \displaystyle \dfrac{1}{2}$ × AB × OC
= $ \displaystyle \dfrac{1}{2}$ × 14 × 7 = 49 $ \displaystyle \text{c}{{\text{m}}^{2}}$
∴ Area of the shaded portion
= Area of the smaller circle +(Area of semicircle – Area of the triangle △ABC )
= $ \displaystyle \dfrac{77}{2}$ + (77 − 49) = 66.5 $ \displaystyle \text{c}{{\text{m}}^{2}}$
Hence the area of the shaded region 66.5 $ \displaystyle \text{c}{{\text{m}}^{2}}$.