In and ,
(Already given)
(Common angles)
(AA similarity criterion)
We know that corresponding sides of similar triangles are in proportion.
$ \displaystyle \dfrac{{\text{CA}}}{{\text{CB}}}=\dfrac{{\text{CD}}}{{\text{CA}}}$
Hence, proved.
In △ADC and △BAC,
∠ADC = ∠BAC (Already given)
∠ACD = ∠BCA (Common angles)
∴ △ADC ∼ △BAC (AA similarity criterion)
We know that corresponding sides of similar triangles are in proportion.
$ \displaystyle \dfrac{{\text{CA}}}{{\text{CB}}}=\dfrac{{\text{CD}}}{{\text{CA}}}$
∴ $ \displaystyle {\Rightarrow \text{C}{{\text{A}}^{2}}=\text{CB}\text{.CD}\text{.}}$
Hence, proved.
Hello!