The correct answer is:

$ \displaystyle 3\sqrt{3}$ cm

$ \displaystyle 3\sqrt{3}$ cm

**Explanation**:

Let $P$ be an external point and a pair of tangents is drawn from point $P$ and angle between these two tangents is 60Â°.

Join $OA$ and $OP$.

Also, $OP$ is a bisector line of $âˆAPC$.

$âˆ´Ââ€‹APO=CPO= 30Â°OAâŠ¥APâ€‹$

Tangent at any point of a circle is perpendicular to the radius through the point of contact.

In right angled $â–³OAP$.

$$ \displaystyle \begin{array}{l}\Rightarrow \dfrac{1}{{\sqrt{3}}}=\dfrac{3}{{AP}}\\\Rightarrow AP=3\sqrt{3}cm\end{array}$â€‹$

Hence, the length of each tangent is $ \displaystyle 3\sqrt{3}cm$$â€‹$.